997 resultados para Lipid vectors


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lipoplex nano-aggregates constituted of plasmid DNA (pDNA) pEGFP-C3 and mixed cationic liposomes, consisting of several percentages of a gemini cationic lipid (GCL) of the 1,2-bis(hexadecyl imidazolium) oxyethylene series, referred to as (C(16)Im)(2)(C2O)(n), with oxyethylene spacers (n = 1, 2 or 3) between the imidazolium cationic groups and the DOPE zwitterionic helper lipid, have been characterized by various biophysical and biological approaches carried out at several GCL compositions (alpha), and either the mass or the effective charge ratio of the lipoplex. The electrochemical study by zeta-potential confirms that the three GCLs yield a 10% lower effective charge than the nominal one, while compacted pDNA yields only a 25% effective negative charge. The SAXS study reveals, irrespective of the spacer length (n) and effective charge ratio (rho(eff)), the presence of two lamellar structures, i.e., one (L-alpha,L-main) in the whole GCL composition and another (L-alpha,L-DOPE,L-rich) with higher periodicity values that coexists with the previous one at low GCL composition (alpha = 0.2). The cryo-TEM analysis shows two types of multilamellar structures consisting of cationic lipidic bilayers with pDNA sandwiched between them: a cluster-type (C-type) at low alpha = 0.2 and a fingerprint-type (FP-type) at alpha >= 0.5, both with similar interlamellar spacing (d) in agreement with the L-alpha,L-main structure determined by SAXS. Transfection efficacies (TEs) of each lipid mixture were determined in four different cell lines (HEK293T, HeLa, Caco-2 and A549) at several alpha and rho(eff) values in the absence and presence of serum (FBS). The optimized formulations (alpha = 0.2 and rho(eff) = 2.0) substantially transfect cells much better than a commercial transfection reagent, Lipofectamine 2000 and previously studied efficient lipoplexes containing other cationic head groups or spacers both in the absence and presence of serum. The activity of optimized formulations may be attributed to the combination of several factors, such as: (a) the fusogenic character of DOPE which results in higher fluidity of the lipoplexes at alpha = 0.2, (b) the coexistence of two lamellar structures at alpha = 0.2 that synergizes the TE of these lipid vectors, and mainly (c) the higher biocompatibility of the GCLs reported in this work due to the presence of two imidazolium cationic groups together with an oligo-oxyethylene spacer. The length of the spacer in the GCL seems to have less impact, although (C(16)Im)(2)(C2O)(n)/DOPEpDNA lipoplexes with n = 1 and 3 show higher gene transfection than n = 2. All the optimum formulations reported herein are all highly efficient with negligible levels of toxicity, and thus, may be considered as very promising gene vectors for in vivo applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipoplex nano-aggregates have been analyzed through biophysical characterization (electrostatics, structure, size and morphology), and biological studies (transfection efficiency and cell viability) in five cancer cell lines. Lipoplexes were prepared from pEGFP-C3 plasmid DNA (pDNA) and mixed liposomes, constituted by a zwitterionic lipid (DOPE) and a gemini cationic lipid (GCL) synthesized in this work, bis(hexadecyl dimethyl ammonium) oxyethylene], referred to as (C16Am)(2)(C2O)(n), (where n is the oxyethylene spacer length, n = 1, 2 or 3, between the ammonium heads). Cryo-TEM micrographs show nano-aggregates with two multilamellar structures, a cluster-type (at low-to-medium GCL composition) and a fingerprint-type that coexists with the cluster-type at medium GCL composition and appears alone at high GCL composition. SAXS diffractograms show that these lipoplexes present three lamellar structures, two of them coexisting at low and high GCL composition. The optimized transfection efficiency (TE) of pDNA was higher for lipoplexes containing GCLs with a longer (n = 3) or shorter (n = 1) polyoxyethylene spacer, at high GCL composition (alpha - 0.7) with low charge ratio (rho(eff) 2). In the all cancer cell lines studied, the TE of the optimized formulations was much better than those of both lipofectamine 2000 and lipoplexes with GCLs of the bis(hexadecyl dimethyl ammonium) alkane series recently reported. Probably, (a) the coexistence of two lamellar structures at high GCL composition synergizes the TE of these lipid vectors, (b) the orientation of the polyoxyethylene region in (C16Am)(2)(C2O)(3)/DOPE may occur in such a way that the spacing between two cationic heads becomes smaller than that in (C16Am)(2)(C2O)(2)/DOPE which is poor in terms of TE, and (c) the synergistic interactions between serum proteins and (C16Am)(2)(C2O)(n)/DOPE-pDNA lipoplexes containing a polyoxyethylene spacer improve TE, especially at high GCL content. Lipoplexes studied here show very low levels of toxicity, which confirm them as improved vectors of pDNA in gene therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is a copy of an article published in the Human gene therapy © 2012 copyright Mary Ann Liebert, Inc.; Human gene therapy is available online at: http://online.liebertpub.com.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-amplifying RNA or RNA replicon is a form of nucleic acid-based vaccine derived from either positive-strand or negative-strand RNA viruses. The gene sequences encoding structural proteins in these RNA viruses are replaced by mRNA encoding antigens of interest as well as by RNA polymerase for replication and transcription. This kind of vaccine has been successfully assayed with many different antigens as vaccines candidates, and has been shown to be potent in several animal species, including mice, nonhuman primates, and humans. A key challenge to realizing the broad potential of self-amplifying vaccines is the need for safe and effective delivery methods. Ideally, an RNA nanocarrier should provide protection from blood nucleases and extended blood circulation, which ultimately would increase the possibility of reaching the target tissue. The delivery system must then be internalized by the target cell and, upon receptor-mediated endocytosis, must be able to escape from the endosomal compartment into the cell cytoplasm, where the RNA machinery is located, while avoiding degradation by lysosomal enzymes. Further, delivery systems for systemic administration ought to be well tolerated upon administration. They should be safe, enabling the multiadministration treatment modalities required for improved clinical outcomes and, from a developmental point of view, production of large batches with reproducible specifications is also desirable. In this review, the concept of self-amplifying RNA vaccines and the most promising lipid-based delivery systems are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we demonstrated dimethyldioctadecylammonium bromide (DODAB), a cationic lipid, bilayer coated Au nanoparticles (AuNPs) could efficiently deliver two types of plasmid DNA into human embryonic kidney cells (HEK 293) in the presence of serum. The transfection efficiency of AuNPs was about five times higher than that of DODAB. The interaction of AuNPs with DNA was characterized with dye intercalation assay and agarose gel electrophoresis. The morphology of the complex of AuNPs with DNA was observed with scanning electron microscope (SEM). The intracellular trafficking of the complex was monitored with transmission electron microscope (TEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonviral vectors are safer than viral systems for gene therapy applications. However, the limited efficacy always prevents their being widely used in clinical practice. Aside from searching new gene nonviral vectors, many researchers focus on finding out new substances to improve the transfection efficiency of existent vectors. In this work, we found a transfection enhancer, nocodazole (NCZ), for dimethyldioctadecylammonium (DODAB, a cationic lipid) bilayer coated gold nanoparticles (AuNPs) mediated gene delivery. It was found that NCZ produces 3-fold transfection enhancement to HEK 293T cells assessed by flow cytometry (FCM). The result was further confirmed by luciferase assay, in which NCZ induced more than 5 times improvement in transfection efficiency after 48 h of transfection. The results from the inductively coupled plasma mass spectrometry (ICP-MS) and FCM showed that NCZ did not affect the internalization of DODAB-AuNPs/DNA complexes. The trafficking of the complexes by transmission electron microscopy (TEM) indicated that the interrupted transportation of the complexes to the lysosomes contributed greatly to the transfection enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viral vectors are the most efficient tools for gene delivery, and the search for tissue-specific infecting viruses is important for the development of in vivo gene therapy strategies. The baculovirus Autographa californica nuclear polyhedrosis virus is widely used as a vector for expression of foreign genes in insect cells, and its host specificity is supposed to be restricted to arthropods. Here we demonstrate that recombinant A. californica nuclear polyhedrosis virus is efficiently taken up by human hepatocytes via an endosomal pathway. High-level reporter gene expression from heterologous promoters was observed in human and rabbit hepatocytes in vitro. Mouse hepatocytes and some other epithelial cell types are targeted at a considerably lower rate. The efficiency of gene transfer by baculovirus considerably exceeds that obtained by calcium phosphate or lipid transfection. These properties of baculovirus suggest a use for it as a vector for liver-directed gene transfer but highlight a potential risk in handling certain recombinant baculoviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factors that determine the epidemiology of Tobacco yellow dwarf virus (TbYDV), including alternative host plants and insect vector(s), were assessed over three consecutive growing seasons at four field sites in Northeastern Victoria in commercial tobacco growing properties. In addition, these factors were assessed for one growing season at three bean growing properties. Overall, 23 leafhopper species were identified at the 7 sites, with Orosius orientalis as the predominant leafhopper. Of the leafhoppers collected, only O. orientalis and Anzygina zealandica tested positive for TbYDV by polymerase chain reaction (PCR). The population dynamics of O. orientalis was assessed using sweep net sampling over three growing seasons and a trimodal distribution was observed. Despite large numbers of O. orientalis occurring early in the growing season (September–October), TbYDV was only detected in these leafhoppers between late November and end of January. The peaks in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and were associated with warmer temperatures and lower rainfall. Spatial and temporal distribution of vegetation at selected sites was determined using quadrat sampling. Of the 40 plant species identified, TbYDV was detected only in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. The proportion of host and non-host availability for leafhoppers was associated with climatic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In computational linguistics, information retrieval and applied cognition, words and concepts are often represented as vectors in high dimensional spaces computed from a corpus of text. These high dimensional spaces are often referred to as Semantic Spaces. We describe a novel and efficient approach to computing these semantic spaces via the use of complex valued vector representations. We report on the practical implementation of the proposed method and some associated experiments. We also briefly discuss how the proposed system relates to previous theoretical work in Information Retrieval and Quantum Mechanics and how the notions of probability, logic and geometry are integrated within a single Hilbert space representation. In this sense the proposed system has more general application and gives rise to a variety of opportunities for future research.